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Fresnel coefficients and Fabry-Perot formula for spatially dispersive metallic layers

Armel Pitelet, Emilien Mallet, Emmanuel Centeno, and Antoine Moreau®
Université Clermont Auvergne, CNRS, Institut Pascal, 63000 Clermont-Ferrand, France
(Received 10 January 2017; revised manuscript received 14 June 2017; published 17 July 2017)

The repulsion between free electrons inside a metal makes its optical response spatially dispersive, so that
it is not described by Drude’s model but by a hydrodynamic model. We give here fully analytic results for a
metallic slab in this framework, thanks to a two-mode cavity formalism leading to a Fabry-Perot formula, and
show that a simplification can be made that preserves the accuracy of the results while allowing much simpler

analytic expressions. For metallic layers thicker than 2.7 nm modified Fresnel coefficients can actually be used to
accurately predict the response of any multilayer with spatially dispersive metals (for reflection, transmission, or
the guided modes). Finally, this explains why adding a small dielectric layer [Y. Luo et al., Phys. Rev. Lett. 111,
093901 (2013)] allows one to reproduce the effects of nonlocality in many cases, and especially for multilayers.
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Drude’s model, where the electromagnetic response of met-
als is summarized in a local permittivity, has been very success-
ful in describing the optical response of metals even at the scale
of a few nanometers. Electrons are, however, repulsing each
other, making the response of metals spatially dispersive—a
phenomenon that is completely overlooked in Drude’s model.
The response is then said to be nonlocal because the metal
cannot be described by a simple permittivity anymore. This
subject has attracted a lot of interest from a theoretical point of
view in the 1970s and 1980s [1,2], but experimental evidence
that the Drude model could be inaccurate even in the optical
domain has been produced only very recently for very narrow
gaps between two metals [3,4]. The hydrodynamic model
with hard-wall boundaries [5-7] is a sufficiently accurate
framework to take these nonlocal effects into account—even
if more complex models taking spill-out corrections have
very recently been proposed [8]. It appears now that nonlocal
effects have an impact on metallodielectric multilayers with
deeply subwavelength thicknesses of dielectric or metal [9],
for instance, when guided modes are supported [6,10] or when
trying to design all kinds of plasmonic flat lenses [11-13].
The hydrodynamic model is particularly interesting in the
framework of multilayers because the fields have analytic
expressions in that case [6,10,12,14,15]. Taking nonlocality
into account can be complicated for more complex structures,
and there is clearly a need for simpler approaches: it has been
recently shown [16], spurring debate [17,18], that adding a
very thin dielectric layer could yield results that match very
well with the prediction of the hydrodynamic model.

In the present work, we first obtain simple analytic
expressions using a generalized cavity formalism for a single
metallic slab. We then show that a simple assumption, which is
valid as soon as the metallic layer is thicker than 2.7 nm in the
visible range and 5-6 nm in the near UV, can greatly reduce
the complexity of the calculus of the nonlocal response. Using
our assumption, simpler yet very accurate analytic results
are obtained for any kind of metallodielectric multilayer.
In order to illustrate what this simplified model can bring
and to clearly assess its potential, we study how nonlocality
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influences the guided modes of an insulator-metal-insulator
(IMI) waveguide [19], shown in Fig. 1. We show that
nonlocality has a clear influence on the way these modes
behave, especially when the metal is embedded in a high-index
dielectric material. Our approach can be considered, in the
framework of multilayered structures, as a justification for the
work of Luo et al. [16] because it is based on the use of effective
Fresnel coefficients. Adding a very thin dielectric layer on
top of the metal is actually a way to correct the reflection
coefficients and thus to take nonlocality into account.

A metallic layer, when spatial dispersion is taken into
account [6], supports (i) the usual electromagnetic transverse
wave and (ii) a longitudinal wave called bulk plasmon. This
makes it possible to use a two-mode formalism to describe
the optical response of the layer, even though both modes
are evanescent. Such a formalism is usually utilized in the
framework of resonant cavities [15,20] but here it provides
analytic expressions for the reflection or the transmission of
a metallic slab (see Fig. 1), which is not an easy task [12].
Assuming an e~'“' time dependency, these coefficients are
obtained by solving the following system of equations [15],
which is derived from the continuity equations:

By = rimA1 + tw1 B + 1,1 By, (1)
Ap = tim A1 + Tm1 By + 1), Bi, )
A; = 11w A1 + Pm1 Bu + 0y, B1. 3
B, = rpaAge 2 4yl Ajemn TR )
B, = pmzAme*(KerKl)h + p;nZAleizK,h’ 5)

where Ay, Bi) (i = 1,2,m; see Fig. 1) are the amplitudes
of transverse mode and A;,B; are the amplitudes of the
longitudinal mode. The above reflection (r,r’,p,0") and trans-
mission (¢,1',7) coefficients are calculated using the boundary
conditions following [14]—the regular conditions and the
additional boundary condition expressing that no electron
is allowed to leave the metal. The r and ¢ coefficients are,
respectively, the reflection and transmission coefficients of
the transverse modes, while p’ is the reflection coefficient for
the longitudinal waves. When a longitudinal or a transverse
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FIG. 1. Schematic representation of an IMI slab of thickness /.
The general expressions for the magnetic field H, are given for each
layer, when light is assumed to illuminate the structure from above.

wave is reflected by an interface, the other kind of wave
is excited too. Coefficients p and r’ take into account the
conversion from transverse to longitudinal and the opposite,
respectively. Finally, ¢’ is the contribution to the outside plane
wave from the longitudinal wave inside the metal while 7 is
the reverse.

The attenuation constants k() = k> — €;k3 (with kg = 27”)
and «; can be deduced from the dispersion relations of the
transverse and longitudinal waves [6], taking k, as the wave
vector along the x direction for all waves. We have thus

w,? (1 1
K| = kxz+i<—+ > (6)
: \/ B* \x;r 1+

where x; = —eowz%yw, X» are the susceptibilities of the free
and bound electrons, respectively, that can be found in [21] for
any metal; y = 0.049 eV and w, = 8.16 €V are, respectively,
the damping factor and the plasma frequency for silver; and g
the nonlocal parameter, taking into account Coulomb interac-
tion and the exchange interaction. This parameter is estimated
from experimental data to be around 1.35 x 10° m/s [3,4],
quite close to theoretical predictions.

When the system describing the two-mode cavity is solved,
it yields a generalized Fabry-Perot formula for the reflection
coefficient, which is remarkable and very convenient [15].
In the case of our transverse and longitudinal modes, the
reflection coefficient is

- —2kmh
Fmolefre”

@)

Fnl = Teff + e
where reff,sz,?m], ttf, are effective coefficients based on
the transmission and reflection coefficients of the two-mode
formalism given above. Their exact expression, which is not
needed here, can be found in [15] and we underline that the
effective reflection coefficients all still depend on A. Finally,
since guided modes of such a structure correspond to poles of
the reflection coefficient, the dispersion relation can simply be
written 1 — 7y Fae 2 = 0,

The typical penetration length of the transverse wave is
classically given by m, which defines a power mode
attenuation of —4.34 dB. For the longitudinal wave, this typical
penetration length is roughly two orders of magnitude shorter
and is given by m The large difference between the two
penetration depths suggests it is possible to simplify all the
above analytic expressions when the right conditions are met.
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However, at such typical depth into the metal, the field
is still 37% of the field at the interface, which is far from
negligible. In order to get a more relevant penetration depth
for the longitudinal wave, we define the quantity L,; as
the distance inside the metal away from a single interface
for which the field undergoes a power mode attenuation
of —20 dB (e 2Ln = 1072). Considering Egs. (1)—(5), it is
easy to understand that the slab response will be largely
different whether it is thicker than L,; or not. If it is thicker,
then all the terms in e~ " can be neglected which leads to
a great simplification: essentially, nonlocality only has an
impact on the internal reflection/transmission coefficients of
the transverse mode, which is the only wave that can eventually
tunnel through the metallic slab. Considering this, we will refer
to this approximation as the one mode approximation (1-MA).
Another way to put this, is to say that the effective reflection
coefficients of the exact solution depend on 4 and tend to the
1-MA reflection coefficients when /4 increases leading to the
following reflection coefficient:

—2Kk,h

_— 8)
1 — ryirppe=2nh’

Im2tmitime
r=rum+

where the expressions of r;; and #;; (i, j = 1,2,m) reduce to

e-dtQ
rij = I Kj, , 9
TEyE-o ®
28
[ E— (10)
“+Z-Q

which constitute nonlocal Fresnel coefficients, and where

k21 1
Q="2(-- ) (11)
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Finally, only the reflection coefficients of the Fabry-Perot-
like formulas are modified by nonlocality and this is enough
to take the spatial dispersion into account as long as the
metallic layer is thicker than a few nanometers. This largely
simplifies the analytic calculations that can be made for
any metallodielectric multilayer, especially for dispersion
relations. Furthermore, this opens the possibility of computing
the nonlocal response of any complex multilayer [22] using
a scattering matrix with slightly modified coefficients to
take nonlocality into account, instead of a more complex
method [14]. When considering the interface between two
media numbered i and j, the outgoing waves with amplitudes
B; and A; propagating downwards (respectively, upwards)
in the above (respectively, lower) medium are linked to the
incoming waves A; and B;, propagating upwards (respectively,
downwards) in the upper (respectively, lower) medium by a
scattering matrix S;_, ;

B,‘ _ Q. . A,’ _ r,-j l‘j,‘ Ai
(A)'_&W<B)'_Qu U)<%>’ 12

where the r;; and ¢;; are given by Eqgs. (9) and (10). The rest
of the scattering matrix method can be applied as it is [23]; it
is not modified by the spatial dispersion.

With the 1-MA, the dispersion relation for a metallic film
is simply 1 — FiFme 2" = 0. When the dielectric is the
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same above and below, the left part of the dispersion relation
can be factorized to reach dispersion relations for symmetric
and antisymmetric modes (when considering the transverse
magnetic field). In the case of a metallic layer, each equation
has only one solution. The symmetric mode is called the
long-range surface plasmon (LRSP) [24] and its dispersion
relation is
K—mtanh<@>+"—"—sz=o, (13)
€m 2 €4
while the antisymmetric mode is the short-range surface
plasmon (SRSP) with a dispersion relation

Km </<mh> Kgq
—coth| — |+ ——-Q =0. (14)
€m 2 €4

Guided modes supported by the IMI structure are well
known for their high wave vectors. Since €2 increases with
ky, and since the impact of nonlocality is directly linked to €2,
this leads us to expect an important impact of nonlocality on
the guided modes supported by the IMI structure. That is the
reason why in the following, we will use these guided modes
to assess the impact of nonlocality.

Using 1.7 nm (12 atoms in thickness) of silver (described
by a Brenden-Bormann model [21]) and TiO, as insulator
(described by a Cauchy formula given by [25]), we have
plotted the effective index result of the 1-MA in Fig. 2. Even
if the system width is very small we can see that the 1-MA
predictions are in excellent agreement with the exacts results,
at least in the visible range (0.19 < -2 < 0.38).

Previous works have shown that a drastic impact of
nonlocality could be expected when the losses are artificially
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FIG. 2. Dispersion curves for the TiO,/Ag/TiO, waveguide,
showing the effective index nes = k,/ko as a function of the
normalized frequency ﬁ The metal thickness # is 1.7 nm.
(a) shows the LRSP mode while (b) presents the SRSP mode. Red
lines correspond to the exact solution (no assumption), green to the
1-MA (one-mode approximation), and black lines to Drude’s model
(local solution). Thick lines correspond to the real part of the effective
index Re(n.¢), while thin lines show Im(ng).
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decreased: the bend-back that is predicted by Drude’s model
simply disappears when nonlocality is taken into account [10].
The example we have chosen shows [see Fig. 2(b)] that burying
the metallic slab in a high-index dielectric produces the same
effect. By moving the frequency of the bend-back away from
the interband transitions, it decreases the losses and allows
this dramatic change to occur on a very realistic case. This
shows that, generally, high-index dielectrics have the potential
to increase the impact of the spatial dispersion.

Now, we determine above which thickness A, the one-
mode approximation can be fully trusted.

‘We have considered here the SRSP when the metallic slab is
embedded in TiO,. This constitutes the “worst case scenario”
because (i) TiO, is the transparent material with the highest
optical index available in the visible and UV range [22] and
(i1) the SRSP mode has the highest possible k, and thus the
highest sensitivity to nonlocality. We have then arbitrarily
chosen to assess the accuracy of the 1-MA by comparing the
quantities Rexaer = FolTm2 and Ripa = Fm17ma because they
appear in the dispersion relation of the guided mode, whether
the exact or approximated relation is considered. Finally, we
define Ay, as the thickness above which the relative error made
on computing Rexac USing Ryya instead is smaller than 1074

Given this definition, /i, actually depends on the frequency
that is considered. Figure 3 thus shows the longitudinal wave
penetration depth L,; and Ay, for visible and near-UV range.
Globally, hj, behaves similarly to L,; when @ changes—
which is a sign that the 1-MA is perfectly accurate when # is
in fact large enough compared to L,;. However, the relation
between the two is not straightforward, as the graph shows.

We underline here that we have chosen strict criteria for
the 1-MA to be deemed accurate. Figure 3 shows what would
be hjjy, for the LRSP too. While in the visible a thickness
larger than typically 2.7 nm is required, for the much more
studied LRSP, a thickness larger than 1 nm is sufficient.
Figure 2 shows for a 1.7 nm slab that even when h < hyy,
the 1-MA can be considered very accurate in describing a
dramatic change in the dispersion relation compared to the
local case.

The values we give for Ay, on Fig. 3 can thus be fully
trusted. They could be discussed only when considering both a
material with a higher index than rutile (TiO;) and modes with

B
7 L
S 6L Visible Uuv
N— 5
T 4
~N 3
-2
£
5 0 | | | | |
0.2 0.25 0.3 0.35 0.4 0.45
w
Wp

FIG. 3. hj, and penetration depth L,; as a function of the
normalized frequency wﬂ,, for an IMI slab using Ag as metal and TiO,
as insulator. Red solid lines and dotted lines correspond, respectively,
to hym and L,; for the SRSP. Blue solid lines and dotted lines
correspond, respectively, to Ay, and L, for the LRSP.
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a higher effective index than the SRSP. But we have checked
that even for multilayers there is no increase of this limit, and
we underline that in much more realistic situations with lower
index dielectrics, like air or glass, and lower effective index
(typically smaller than 10) than our worst case considered
here, the limit for which the one-mode approximation becomes
fully valid is around 1 nm. For a given w, if the thickness of a
metallic slab is larger than Ay, there is thus absolutely no need
to go beyond the one-mode approximation, and the convenient
analytic expressions we have derived above are fully sufficient.

In a recent work [16], it has been shown that a well chosen
dielectric layer in terms of permittivity and thickness can be
designed to fit the reflection coefficient of a bare metallic
surface when nonlocality is taken into account. The present
work can be considered as a more thorough justification of their
work, showing the approach by Luo et al. can be considered
effective for multilayers in general. We have actually found
that adding a thin layer of a dielectric with a well chosen
permittivity at each interface between a metal and a dielectric
allows one to match all the Fresnel coefficients we have
introduced above, not just the reflection coefficient between a
dielectric and a metal. This can be done provided the dielectric
layer of thickness Ad added at any interface between a metal
and a dielectric presents a permittivity

Ad K 15
€ = o (15)
We underline that this simple expression is a generalization of
the expression given in [16] because it allows one to change the
boundary conditions that are considered by simply changing
Q2 and «; [6].

For multilayered structures, though, the simplification we
propose here is even simpler than adding a supplementary
layer—but we admit it cannot be directly extended to complex
geometries, whereas adding a dielectric layer is always both
possible and easy. And as long as the nonlocal Fresnel
coefficients are somehow reproduced, then the impact of
nonlocality is likely to be accurately predicted. However, we
underline that transformation optics [26,27], which has been
used to link the response of a multilayer to geometries like
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metallic edges [28] or sharp metal protrusion [29] and can
take nonlocality into account [30,31], can be combined with
our one-mode approximation. This is expected to simplify
such calculations when studying nonlocality and to allow our
conclusions to be extended to other geometries.

In conclusion, we have proposed here analytic expressions
for the reflection coefficient of a single nonlocal metallic slab
using a generalized Fabry-Perot formula, and a simplification
of this expression that can be applied to any metallic layer
larger than 2.7 nm in the visible range for any wavelength
and any surrounding dielectrics. This allows us to introduce
nonlocal Fresnel coefficients thus simplifying all the analytic
calculations that can be made for metallodielectric multilayers.
In this framework, we underline that our work is a rigorous
justification of why adding a very thin dielectric layer with a
well chosen permittivity [16] can yield very accurate results.
While exploring different cases to test the robustness of our
approach, it appeared that surrounding metallic films with
high-index dielectrics is likely to enhance nonlocal effects
by allowing one to excite wave vector guided modes at lower
frequencies for which absorption is lowered. Exciting such
guided modes may be experimentally challenging, but it is
worth looking in that direction to come up with well controlled
experiments showing nonlocal effects. We hope this work will
help the community to much more easily assess the influence
of nonlocality on the response of metallic structures with
nanometer-sized features—especially in cases that are both
numerically expensive and the most likely to be influenced
by spatial dispersion [6], like the computation of the Purcell
effect [32,33] when emitters are placed under an optical patch
antenna [34]. Our study actually suggests that, when using
advanced simulation tools for complicated geometries [35,36],
it is not necessary to use the hydrodynamic model to describe
the response of the metal beyond a boundary layer of 2.7 nm
in the visible. This is likely to make such simulations less
expensive, an obvious need [16] of the community.

This work has been supported by the French National
Research Agency, “Physics of Gap-Plasmons” Project No.
ANR-13- JS10-0003.
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