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Chapter 1

Introduction

This document is a brief user manual for the RFSM toolset. It is, in its current form, very preliminary,
but should suffice for a quick grasp of the provided tools.

RFSM is a set of tools aimed at describing, drawing and simulating reactive finite state machines.
Reactive FSMs are a FSMs for which transitions can only take place at the occurence of events.

RFSM has been developed mainly for pedagogical purposes, in order to initiate students to model-
based design. It is currently used in courses dedicated to embedded system design both on software
and hardware platforms (microcontrolers and FPGA resp.). But RFSM can also be used to generate
code (C, SystemC or VHDL) from high-level models to be integrated to existing applications.

RFSM is actually composed of three distinct tools :

• a command-line compiler (rfsmc),

• a graphical user-interface (GUI) to the compiler,

• a library for the OCaml programming language.

These tools can be used to

• describe FSM-based models and testbenches,

• generate graphical representations of these models (.dot format) for visualisation,

• simulate these models, producing .vcd files to be displayed with waveform viewers such as
gtkwave,

• generate C, SystemC and VHDL implementations (including testbenches for simulation)

This document is organized as follows. Chapter 2 is an informal presentation of the RFSM language
and of its possible usages. Chapter 3 describes how to use the command-line compiler. Chapter 4
describes the GUI-based application. Appendix A gives the detailed syntax of the language. Appendix
B summarizes the compiler options. Appendices C1, C2 and C3 give some examples of code generated
by the C, SystemC and VHDL backends.
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Chapter 2

Overview

This chapter gives informal introduction to the RFSM language and of how to use it to describe FSM-
based systems.

2.1 Introductory example

Listing 2.1 is an example of a simple RFSM program1. This program is used to describe and simulate
the model of a calibrated pulse generator. Given an input clock H, with period TH , it generates a pulse
of duration n× TH whenever input E is set when event H occurs.

The program can be divided in four parts.

The first part (line 1) introduces a type declaration. The type bit is defined as a synonym of
type int<0:1>, i.e. the type of integers with values between 0 and 1.

The second part (lines 3–15) gives a generic model of the generator behavior. The model, named
gensig, has one parameter, n, two inputs, h and e, of type event and bit respectively, and one output
s of type bit. Its behavior is specified as a reactive FSM with two states, E0 and E1, and one internal
variable k. The transitions of this FSM are given after the trans: keyword in the form :

source state -- condition | actions -> destination state

where condition is the condition trigerring the transition and actions is a list of actions performed when
then transition is enabled. The semantics is that the transition is enabled whenever the FSM is in the
source state and the triggering condition is true. The associated actions are then performed and the
FSM moves to the destination state. For example, the first transition is enabled whenever an event
occurs on input h and, at this instant, the value of input e is 1. The FSM then goes from state E0 to
state E1 and sets its internal variable k and its output s to 1. The initial transition of the FSM is given
after the itrans: keyword in the form :

| initial actions -> initial state

Here the FSM is initially in state E0 with output s set to 0.
A graphical representation of the gensig model is given in Fig. 2.1 (this representation was actually

automatically generated from the program in Listing 2.1, as explained in Chap. 3).
Note that, at this level, the value of the parameter n, used in the type of the internal variable k

(line 9) and in the transition conditions (lines 12 and 13) is left unspecified, making the gensig model
a generic one.

1This program is provided in the distribution, under directory examples/single/gensig.
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Listing 2.1: A simple RFSM program� �
1 fsm model gens ig<n : int> (
2 in h : event ,
3 in e : bool ,
4 out s : bool )
5 {
6 states : E0 , E1 ;
7 vars : k : int <0. .n>;
8 trans :
9 E0 −− h . e=1 | k :=1; s :=1 −> E1 ,

10 E1 −− h . k<n | k:=k+1 −> E1 ,
11 E1 −− h . k=n | s :=0 −> E0 ;
12 itrans : | s :=0 −> E0 ;
13 }
14
15 input H : event = periodic (10 ,0 , 80 )
16 input E : b i t = value changes ( 0 : 0 , 25 : 1 , 3 5 : 0 )
17 output S : b i t
18
19 fsm g4 = gens ig<4>(H,E, S)� �

The third part of the program (lines 17–19) lists global inputs and outputs2. For global outputs
the declaration simply gives a name and a type. For global inputs, the declaration also specifies the
stimuli which are attached to the corresponding input for simulating the system. The program of
Listing 2.1 uses two kinds of stimuli3. The stimuli attached to input H are declared as periodic, with
a period of 10 time units, a start time of 0 and a end time of 80. This means than an event will be
produced on this input at time 0, 10, 20, 30, 40, 50, 60, 70 and 80. The stimuli attached to input E say
that this input will respectively take value 0, 1 and 0 at time 0, 25 and 35 (thus producing a “pulse” of
duration 10 time units starting at time 25).

The last part of the program (line 21) consists in building the global model of the system by
instanciating the FSM models. Instanciating a model creates a “copy” of this model for which

• the generic parameters (n here) are now bound to actual values (4 here),

• the inputs and outputs are connected to the global inputs or outputs.

A graphical representation of the system described in Listing 2.1 is given in Fig. 2.24.

Simulating

Simulating the program means computing the reaction of the system to the input stimuli. Simulation
can be performed the RFSM command-line compiler or the IDE (see Chap. 3 and 4 resp.). It produces
a set of traces in VCD (Value Change Dump) format which can visualized using waveform viewers such
as gtkwave. The simulation results for the program in Listing 2.1 are illustrated in Fig. 2.3.

2In case of multi-FSM programs, this part will also contains the declaration of shared events and variables. See
Sec. 2.2.3.

3See Sec. 2.2.3 for a complete description of stimuli.
4Again, this representation was actually automatically generated from the program in Listing 2.1, as explained in

Chap. 3
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var k:int<0:n>

E0

____
s:=0

E1

h.(e=1)
__________
k:=1; s:=1

h.(k=n)
_______

s:=0

h.(k<n)
_______
k:=k+1

Figure 2.1: A graphical representation of FSM model defined in Listing 2.1

Code generation

RFSM can also generate code implementing the described systems simulation and/or integration to
existing applications.

Currently, three backends are provided :

• a backend generating a C-based implementation of each FSM instance,

• a backend generating a testbench implementation in SystemC (FSM instances + stimuli genera-
tors),

• a backend generating a testbench implementation in VHDL (FSM instances + stimuli generators).

The target language for the C backend is a C-like language augmented with

• a task keyword for naming generated behaviors,

• in, out and iinout keywords for identifying inputs and outputs,

• a builtin event type,

• primitives for handling events : wait_ev(), wait_evs() and notify_ev().

The idea is that the generated code can be turned into an application for a multi-tasking operating
system by providing actual implementations of the corresponding constructs and primitives.

For the SystemC and VHDL backends, the generated code can actually be compiled and executed
for simulation purpose and. The FSM implementations generated by the VHDL backend can also be
synthetized to be implemented hardware using hardware-specific tools5.

Appendices C1, C2 and C3 respectively give the C and SystemC code generated from the example
in Listing 2.1.

5We use the quartus toolchain from Intel/Altera.
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var k:int<0:4>

E0

____
S:=0

E1

H.(E=1)
__________
k:=1; S:=1

H.(k=4)
_______

S:=0

H.(k<4)
_______
k:=k+1

input E:bool
input H:event
output S:bool

Figure 2.2: A graphical representation of system described in Listing 2.1

2.2 The RFSM language

This section is more thorough presentation of the RFSM language introduced in the previous section.
This presentation is deliberately informal. The complete language syntax can be found in Appendix A.

2.2.1 Types

There are two categories of types : builtin types and user defined types.

Builtin types are : bool, int, float, char, event and arrays.

I Objects of type bool can have only two values : 0 (false) and 1 (true).

I Values of type char are denoted using single quotes. For example, for a variable c having type
char :

c := ’A’

They can be converted from/to they internal representation as integers using the :: cast operator. For
example, if c has type char and n type int, then

n := ’A’:: int ; c:=(n+1)::char

assigns value 65 to n (ASCII code) and, then, value ’B’ to c.

I The type int can be refined using a size or a range annotation. The type int<sz>, where sz is
an integer, is the type of integers which can be encoded using n bits. The type int<min:max>, where
both min and max are integers, is the type of integers whose value ranges from min to max. The size and
range limits, can be constants or expressions whose value can be computed as compile time (expressions
involving parameter values, as exemplified line 9 in Listing 2.1).
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Figure 2.3: Simulation results for the program in Listing 2.1, viewed using gtkwave

+, -, *, /, % (modulo) arithmetic operations
>>, << (logical) shift right and left
&, ||, ^ bitwise and, or and xor
[.:.] bit range extraction (ex: n:=m[5:3])
[.] single bit extraction (ex: b:=m[4])
:: resize (ex: n::8)

Table 2.1: Builtin operations on integers

I Supported operations on values of type int are described in Table 2.2.1. If n is an integer and hi

(resp. lo) an integer expression then n[hi:lo] designates the value represented by the bits hi...lo in
the binary representation of n. Bit ranges can be both read (ex: x=y[6:2]) or written (ex: x[8:4]:=0).
The syntax n[i—, where n is an integer is equivalent to n[i:i]. The cast operator (::) can be used
to combine integers with different sizes (for example, if n has type int<16> and m has type int<8>,
writing n:=n+m is not allowed and mus be written, instead, n:=n+m::int<16>. Note that the logical
“or” operator is denoted “||” because the single “|” is already used in the syntax.

I The operations on values of type float are : ”+.”, ”-.”, ”*.” and ”/.” (the dot suffix is required
to distinguish them from the corresponding operations on ints).

I Arrays are 1D, fixed-size collections of ints, bools or floats. Indices range from 0 to n-1 where
n is the size of the array. For example, int array[4] is the type describing arrays of four integers. If
t is an object with an array type, its cell with index i is denoted t[i].

User defined types are either type abbreviations, enumerations or records.

I Type abbreviations are introduced with the following declaration

type typename = type expression

Each occurrence of the defined type in the program is actually substituted by the corresponding type
expression. An example of type abbreviation has been given in the program of Listing 2.1.

I Enumerated types are introduced with the following declaration

type typename = enum { C1, ..., Cn }

6



where C1, . . . , Cn are the enumerated values, each being denoted by an identifier starting with an
uppercase letter. For example :

type color = { Red, Green, Orange }

I Record types are introduced with the following declaration

type typename = record { fid1: ty1, ..., fidn : tyn }

where fid1, . . . , fidn and ty1, . . . , tyn are respectively the name and type of each record field For
example :

type coord = record { x: int, y: int}

Individual fields of a value with a record type can be accessed using the classical “dot” notation.
For example, with a variable c having type record as defined above :

c.x := c.x+1

2.2.2 FSM models

An FSM model, introduced by the fsm model keywords, describes the interface and behavior of a
reactive finite state machine. A reactive finite state machine is a finite state machine whose transitions
can only be caused by the occurrence of events.

fsm model <interface> <body>

The interface of the model gives its name, a list of parameters (which can be empty) and a list of
inputs and outputs. All parameters and IOs are typed. Inputs and outputs are explicitely tagged. An
IO tagged inout acts both as input and output (it can be read and written by the model). Inputs and
outputs are listed between (...). Parameters, if present are given between <...>. Examples :

fsm model cntmod8 (in h: event, out s: int<0..7>){ ... }

fsm model gensig<n:int> (in h: event, in e: bit, out s: bit) { ... }

fsm model update (in top: event, inout lock: bool){ ... }

The model body, written between {...}, generally comprises four sections :

• a section giving the list of states,

• a section introducing local (internal) variables,

• a section giving the list of transition,

• a section specifying the initial transition.

Each section starts with the corresponding keyword (states:, vars:, trans: and itrans: resp.)
and ends with a semi-colon.

fsm model ... ( ... ) { states: ...; vars: ...; trans: ...; itrans: ...; }
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States

The states: section gives the set of internal states, as a comma-separated list of identifiers (each
starting with a uppercase letter). Example :

states: Idle , Wait1, Wait2, Done;

Variables

The vars: section gives the set of internal variables, each with its type. Example :

vars: cnt: int , stop: bool;

The type of a variable may depend on parameters listed in the model interface. Example

fsm gensig<n: int> (...) { ... vars: k: int<0..n>; ... }

The vars: section may be omitted.

Transitions

The trans: section gives the set of transitions between states. Each transition is denoted

src state −− condition | actions −> dst state

where

• src state and dst state respectively designates the source state and destination state,

• condition is the condition trigerring the transition,

• actions is a list of actions performed when then transition is enabled.

The semantics is that the transition is enabled whenever the FSM is in the source state and the
triggering condition is true. The associated actions are then performed and the FSM moves to the
destination state.

A condition must involve exactly one triggering event and, possibly, a conjunction of boolean
conditions called guards. The triggering event must be listed in the inputs. The guards may involve
inputs and/or internal variables.

The actions associated to a transition consists in modifications of the outputs and/or internal
variables or emissions of events. Modifications of outputs and internal variables are denoted

id := expr

where id is the name of the output (resp. variable) and expr an expression involving inputs, outputs
and variables and operations allowed on the corresponding types. The set of allowed operations is given
in Table 2.2.

The action of emitting of an event is simply denoted by the name of this event.

Examples :

S0 −− top −> S1
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int + - * / mod = != > < >= <=

bool = !=

enumeration = !=

Table 2.2: Operations on types

In the above example, the enclosing FSM switches from state S0 to state S1 when the event top

occurs.

Idle −− Clic | ctr:=0; Received −> Wait

In the above example, the enclosing FSM switches from state Idle to state Wait, resetting the
internal variable ctr to 0 and emitting event Received whenever an event occurs on its Clic input.

Wait −− Top.ctr<8 | ctr:=ctr+1 −> Wait

In the above example, the enclosing FSM stays in state Wait but increments the internal variable
ctr whenever an event Top occurs and that, at this instant, the value of variable ctr is smaller than 8.

Expressions may also involve the C-like ternary conditional operator ?:. For example, in the example
below, the enclosing FSM stays in state S0 but updates the variable k at each occurrence of event H so
that is incremented if its current value is less than 8 or reset to 0 otherwise.

S0 −− H | k:=k<8?k+1:0 −> S0

The set of actions may be empty. In this case, the transition is denoted :

src state −− condition −> dst state

Initial transition

The itrans: section specifies the initial transition of the FSM. This transition is denoted :

| actions −> init state

where init state is the initial state and actions a list of actions to be performed when initializing
the FSM. The latter can be empty. in this case the initial transition is simply denoted :

−> init state

2.2.3 Globals

Globals are used to connect model instances to the external world or to other instances.

Inputs and outputs

Interface to the external world are represented by input and output objects.

I For outputs the declaration simply gives a name and a type :

output name : typ
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I For inputs, the declaration also specifies the stimuli which are attached to the corresponding
input for simulating the system.

input name : typ = stimuli

There are three types of stimuli : periodic and sporadic stimuli for inputs of type event and value
changes for scalar inputs.

Periodic stimuli are specified with a period, a starting time and an ending time.

periodic(period,t0,t1)

Sporadic stimuli are simply a list of dates at which the corresponding input event occurs.

sporadic(t1 ,..., tn)

Value changes are given as list of pairs t:v, where t is a date and v the value assigned to the
corresponding input at this date.

value changes(t1:v1,...,tn:vn)

Examples:

input Clk: event = periodic(10,10,120)

The previous declaration declares Clk as a global input producing periodic events with period 10,
starting at t=10 and ending at t=1006.

input Clic: event = sporadic(25,75,95)

The previous declaration declares Clic as a global input producing events at t=25, t=75 and t=95.

input E : bool = value changes (0:false, 25:true, 35:false)

The previous declaration declares E as a global boolean input taking value false at t=0, true at
t=25 and false again at t=35.

Shared objects

Shared objects are used to represent interconnexions between FSM instances. This situation only
occurs when the system model involves several FSM instances and when the input of a given instance
is provided by the output of another one (see Section 2.2.4).

I For shared objects the declaration simply gives a name and a type :

shared name : typ

6Note that, at this level, there’s no need for an absolute unit for time.
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2.2.4 Instances and system

The description of the system is carried out by instanciating – and, possibly, inter-connecting – previ-
ously defined FSM models.

Instanciating a model creates a “copy” of the corresponding FSM for which

• the parameters of the model are bound to their actual value,

• the declared inputs and outputs are connected to global inputs, outputs or shared objects.

The syntax for declaring a model instance is as follows :

fsm inst name = model name<param values>(actual ios)

where

• inst name is the name of the created instance,

• model name is the name of the instanciated model,

• param values is a comma-separated list of values to be assigned to the formal (generic) parame-
ters,

• actual ios is a comma-separated list of global inputs, outputs or shared objects to be connected
to the instanciated model.

Binding of parameter values and IOs is done by position. Of course the number and respective types
of the formal and actual parameters (resp. IOs) must match.

For example, the last line of the program given in Listing 2.1

fsm g4 = gensig<4>(H,E,S)

creates an instance of model gensig for which n=4 and whose inputs (resp. output) are connected
to the global inputs (resp. output) H and E (resp. S).

Multi-FSM models

It is of course possible to build a system model as a composition of FSM instances. An example is
given in Listing 2.2. The system is a simple modulo 8 counter, here described as a combination of three
event-synchronized modulo 2 counters7.

Here a single FSM model (cntmod2) is instanciated thrice, as C0, C1 and C2. These instances are
synchronized using two shared events, R0 and R1.

The graphical representation of the program is given in Fig. 2.4. Simulation results are illustrated
in Fig 2.5.

7This program is provided in the distribution, under directory examples/multi/ctrmod8.
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Listing 2.2: A multi-model RFSM program� �
1 fsm model cntmod2 (
2 in h : event ,
3 out s : int <0:1> ,
4 out r : event )
5 {
6 states : E0 , E1 ;
7 trans :
8 E0 −− h | s :=1 −> E1 ,
9 E1 −− h | r ; s :=0 −> E0 ;

10 itrans : | s :=0 −> E0 ;
11 }
12
13 input H: event = periodic (10 ,10 ,100)
14 output S0 : int <0:1>
15 output S1 : int <0:1>
16 output S2 : int <0:1>
17 output R2 : event
18
19 shared R0 : event
20 shared R1 : event
21
22 fsm C0 = cntmod2 (H, S0 , R0)
23 fsm C1 = cntmod2 (R0 , S1 , R1)
24 fsm C2 = cntmod2 (R1 , S2 , R2)� �
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C0 C2C1

E0

_____
S0:=0

E1

H
_____
S0:=1

H
_________
R0; S0:=0

E0

_____
S1:=0

E1

R0
_____
S1:=1

R0
_________
R1; S1:=0

E0

_____
S2:=0

E1

R1
_____
S2:=1

R1
_________
R2; S2:=0

input H:event
output R2:event

output S2:int<0:1>
output S1:int<0:1>
output S0:int<0:1>

shared R1:event
shared R0:event

Figure 2.4: A graphical representation of program described in Listing 2.2

2.2.5 Functions

Conditions and actions associated to FSM transitions can use globally defined functions. An example is
given in listing 2.38. The FSM described here computes an approximation of its input u using Heron’s
classical algorithm. Successive approximations are computed in state Iter and the end of computation
is detected when the square of the current approximation x differs from the argument (a) from less
than a given threshold eps. For this, the model uses the global function f_abs defined at the beginning
of the program. This function computes the absolute value of its argument and is used twice in the
definition of the FSM model heron, for defining the condition associated to the two transitions going
out of state Iter.

I The general form for a function definition is

function name (<arg 1>:<type 1>, ..., <arg n>:<type n>): <type r> { return <expr> }

where

• <arg i> (resp. <type i>) is the name (resp. type) of the ith argument,

• <type r> is the type of value returned by the function,

• <expr> is the expression defining the function value.

I Functions can only return one result and cannot use local variables. There are therefore more
like so-called macros in the C language than full-fledged functions and are typically used to improve
readability of the programs.

8This example can be found in directory examples/heron/v2 in the distribution.
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Figure 2.5: Simulation results for the program in Listing 2.2

2.2.6 Constants

Global constants can also be defined using the following syntax :

constant name : <type> = <value>

where

• <type> is the type of the defined constant (currently limited to int, float and arrays of ints
or floats,

• <value> is the value of the constant (which must be an int or float literal or an array of such
literals).

Global constants, just like global functions, have a global scope and hence can be used in any FSM
model or instance.

2.2.7 Semantic issues

This presentation of the language has deliberately focused on syntax. Formalizing the semantics of
programs made of reactive finite state machines – and in particular when several of these machines are
interacting – is actually far from trivial and will not be carried out here.

Instead, this section will describe some “practical” problems that may arise when simulating such
systems and how the language currently addresses them, without delving too much into the underlying
semantics issues9.

Priorities

The FSM models involved in programs should normally be deterministic. In other words, a situation
where several transitions are enabled at the same instant should normally never arise. But this condition
may actually be difficult to enforce, especially for models reacting to several input events. Consider for
example, the model described in Listing 2.4. This model describes a (simplified) stopwatch. It starts
counting seconds (materialized by event sec) as soon as event startstop occurs and stops as soon as
it occurs again.

9This is not that these issues do not deserve a formal treatment. Of course, they do ! But we think we this document
is not the right place to do it.
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Listing 2.3: An RFSM program using a global function definition� �
1 function f abs ( x : f l o a t ) : f l o a t { return x < 0 .0 ? −.x : x }
2
3 fsm model Heron <eps : f l o a t> (
4 in h : event ,
5 in s t a r t : bool ,
6 in u : f l o a t ,
7 out rdy : bool ,
8 out n i t e r : int ,
9 out r : f l o a t )

10 {
11 states : Id l e , I t e r ;
12 vars : a : f l o a t , x : f l o a t , n : i n t ;
13 trans :
14 I d l e −− h . s t a r t=1 | a:=u ; x:=u ; rdy :=0; n:=0 −> I t e r ,
15 I t e r −− h . f abs ( x ∗ . x−.a )>=eps | x :=(x+.a / . x ) / . 2 . 0 ; n:=n+1 −> I t e r ,
16 I t e r −− h . f abs ( x ∗ . x−.a )<eps | r :=x ; n i t e r :=n ; rdy :=1 −> I d l e ;
17 itrans : | rdy :=1 −> I d l e ;
18 }� �

Listing 2.4: A program showing a potentially non-deterministic model� �
1 fsm model chrono (
2 in s ec : event ,
3 in s t a r t s t o p : event ,
4 out a f f : i n t )
5 {
6 states : Stopped , Running ;
7 vars : c t r : i n t ;
8 trans :
9 Stopped −− s t a r t s t o p | c t r :=0; a f f :=0 −> Running ,

10 Running −− s ec | c t r := c t r +1; a f f := c t r −> Running ,
11 Running −− s t a r t s t o p −> Stopped ;
12 itrans : −> Stopped ;
13 }
14
15 input StartStop : event = sporadic (25 ,70)
16 input H: event = periodic (10 ,10 ,110)
17 output Aff : i n t
18
19 fsm c1 = chrono (H, StartStop , Aff )� �
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Listing 2.5: A rewriting of the model defined in Listing 2.4� �
1 fsm model chrono ( . . . )
2 {
3 . . .
4 trans :
5 . . .
6 Running −− s ec | c t r := c t r +1; a f f := c t r −> Running ,
7 ∗Running −− s t a r t s t o p −> Stopped ;
8 itrans : −> Stopped ;
9 }

10 . . .� �
The problem is that if both events occur simultaneously then both the transitions at line 10 and 11

are enabled. In fact, here’s the error message produced by the compiler when trying to simulate the
above program :

Error when simulating FSM c1: non deterministic transitions found at t=70:

- Running--h|ctr:=ctr+1; aff:=ctr->Running[0]

- Running--startstop->Stopped[0]

Of course, this could be avoided by modifying the stimuli attached to input StartStop so that the
corresponding events are never emitted at time t = n× 10. But this is, in a sence, cheating, since this
event is supposed to modelize user interaction which occur, by essence, at impredictible dates.

The above problem can be solved by assigning a priority to transitions. In the current implemen-
tation, this is achieved by tagging some transitions as “high priority” transitions10. When several
transitions are enabled, if one is tagged as “high priority” than it is automatically selected11.

Syntaxically, tagging a transition is simply achieved by prefixing it with a “*”. In the case of
the example above, the modified program is given in Listing 2.5. Tagging the last transition is here
equivalent to give to the startstop precedence against the h event when the model is in state Running.

Sequential vs. synchronous actions

An important question is whether, when a transition specifying several actions to be performed is taken,
the corresponding actions are performed sequentially or not.

Consider for example, the following transition, in which x and y are internal variables of the enclosing
FSM :

S0 −− H | x:=x+1; y:=x∗2 −−> S1

Suppose that the value of variable x is 1 just before event H occurs. What will the value of variables
x and y after this transition ?

I With a sequential interpretation, actions are performed sequentially, one after the other, in
the order they are specified. With this interpretation, order of execution matters. In the example above,
it will assign the value 2 to x and 4 to y.

10Future versions may evolve towards a more sophisticated mechanism allowing numeric priorities.
11If none (resp. several) is (resp. are) tagged, the conflict remains, of course.
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I With a synchronous interpretation, actions are performed in parallel, the value of each variable
occuring in right-hand-side expressions being the one before the transition. With this interpretation,
order of executions does not matter. In the example above, it will assign the value 2 to x and 2 to y.

A sequential interpretation naturally fits a software execution model, in which FSM variables are
implemented as program variables and actions as immediate modifications of these variables, whereas
a synchronous interpretation reflects hardware execution models, in which FSM variables are typically
implemented as registers which are updated in parallel at each clock cycle.

By default, the rfsmc compiler relies on a sequential interpretation, both for simulation and code
production12. But, in certain cases, and in particular when specifying models to be synthetized on
hardware, a synchronous interpretation is more natural and/or can lead to more efficient implementa-
tions. Switching to a synchronous interpretation is possible by invoking the rfsmc compiler with the
-synchronous_actions option13.

Note. As a syntactic reminder, list of actions are printed in diagrams using “;” as a separator when
using a sequential interpretation and using “,” when using a synchronous interpretation.

12For the C and SystemC backends, this means that FSM variables are implemented as local variables of the function
implementing the FSM model. For the VHDL backend, these variables are implemented as variables withing the process
implementing the FSM.

13For the VHDL backend, in particular, the -synchronous actions option forces the FSM variables to be implemented
as signals.
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Chapter 3

Using the RFSM compiler

The RFSM compiler can be used to

• produce graphical representations of programs (using the .dot format),

• simulate programs, generating execution traces (.vcd format),

• generate C, SystemC or VHDL code from programs.

This chapter describes how to invoke compiler on the command-line. On Unix systems, this is done
from a terminal running a shell interpreter. On Windows, from an MSYS or Cygwin terminal.

The compiler is invoked with a command like :

rfsmc [options] file

where file is the name of the file containing the source code (by convention, this file should be
suffixed .fsm).

The complete set of options is described in App. 4.
The set of generated files depends on the selected target. The output file rfsm.output contains the

list of the generated file.

3.1 Generating a graphical representation of the program

rfsmc -dot foo.fsm

The previous command generates graphical representations of the program contained in file foo.cph
in .dot format. This representation can be viewed with the Graphviz suite of tools1.

By default, the command generates a single file foo_top.dot containing the top level representation
of the system (with one “box” for each FSM instance). By passing the -dot_fsm_insts option (resp.
-dot_fsm_models), it is possible to obtain separate .dot files for each FSM instance (resp. model).

3.2 Running the simulator

rfsmc -sim foo.fsm

1Available freely from http://www.graphviz.org.
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The previous command runs simulator on the program contained in file foo.fsm, writing an execu-
tion trace in VCD (Value Change Dump) format in file run.vcd.

This .vcd file can be viewed using a VCD visualizing application such as gtkwave2.
The name of the vcd.file can be changed using the -vcd option.

3.3 Generating C code

rsfmc -ctask foo.fsm

For each FSM instance f contained in file foo.fsm, the previous command generates a file f.c

containing a C-based implementation of the corresponding behavior.
By default, the generated code is written in the current directory. This can be changed with the

-target_dir option.

3.4 Generating SystemC code

The minimal command for invoking the SystemC backend is :

rsfmc -systemc foo.fsm

This will generate the SystemC code corresponding the program contained in file foo.fsm, i.e. write
the following files :

• for each FSM instance f, a pair of files f.h and f.cpp containing the interface and implementation
of the SystemC module describing this instance,

• for each input i, a pair of files inp_i.h and inp_i.cpp containing the interface and implementa-
tion of the SystemC module describing this input (generating the associated stimuli, in particular),

• a file tb.cpp containing the description of the testbench corresponding to the program for simu-
lation.

Simulation itself is performed by compiling the generated code and running the executable, using
the standard SystemC toolchain. In order to simplify this, the RFSM compiler also generates a list
of Makefile targets to be appended to a predefined Makefile so that compiling and running the code
generated by the SystemC backend can be performed by simply invoking make on this Makefile. For
this, the RFSM compiler simply needs to know where this predefined Makefile has been installed. This
is achieved by using the -lib option when invoking the compiler. For example, provided that RFSM
has been installed in directory /usr/local/rfsm, the following command

rsfmc -systemc -lib /usr/local/rfsm/lib -target_dir ./systemc foo.fsm

will write in directory ./systemc the generated source files and the corresponding Makefile. Com-
piling these files and running the resulting application is then simply achieved by typing

cd ./systemc

make

Note. Of course, you may have to adjust some definitions in the file .../lib/etc/Makefile.systemc
to reflect the specifities of your local SystemC installation.

2gtkwave.sourceforge.net
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3.5 Generating VHDL code

The minimal command for invoking the VHDL backend is :

rsfmc -vhdl foo.fsm

This will generate the VHDL code corresponding the program contained in file foo.fsm, i.e. write
the following files :

• for each FSM instance f, a file f.vhd containing the entity and architecture describing this
instance,

• a file tb.vhd containing the description of the testbench corresponding to the program for simu-
lation.

The produced files can then compiled, simulated and synthetized using a standard VHDL toolchain3.
Concerning simulation, and as for the SystemC backend, the process can be grealy simplified by

using a pair of Makefiles, one predefined and the other generated by the compiler. For example, and,
again, provided that RFSM has been installed in directory /usr/local/rfsm, the following command

rsfmc -vhdl -lib /usr/local/rfsm/lib -target_dir ./vhdl foo.fsm

will write in directory ./vhdl the generated source files and the corresponding Makefile. Compiling
these files and running the resulting application is then simply achieved by typing

cd ./vhdl

make

Note. As for the SystemC backend, for this to work, you may have to adjust some definitions in
the file

3.6 Using make

The current distribution provides, in .../lib/etc directory, a file Makefile.app aiming at easing the
invokation of the RFSM compiler and the exploitation of the generated products.

Basically, if this file has been installed, let say in directory /usr/local/rfsm/lib/etc and if you
create the following Makefile in the working directory (that containing the RFSM source file)� �
APP= # to be s e t to the name o f the source f i l e ( ex : foo )
DOT OPTS= # to be a d j u s t e d i f necessary
SIM OPTS= # to be a d j u s t e d i f necessary
SYSTEMC OPTS= # to be a d j u s t e d i f necessary
VHDL OPTS= # to be a d j u s t e d i f necessary
i n c lude / usr / l o c a l / rfsm / l i b / e t c / Make f i l e . app� �

then, for example, simply typing4

• make dot will generate the .dot and lauch the corresponding viewer,

• make sim.run to run the simulation using the interpreter (make sim.show to display results),

3We use GHDL for simulation and Altera/Quartus for synthesis.
4Please refer to the file Makefile.app itself for a complete list of targets.
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• make ctask.code will invoke the C backend C and generate the corresponding code,

• make systemc.code will invoke the SystemC backend and generate the corresponding code,

• make systemc.run will invoke the SystemC backend, generate the corresponding code, compile
it and run the corresponding simulation,

• make vhdl.code will invoke the VHDL backend and generate the corresponding code,

• make vhdl.run will invoke the VHDL backend, generate the corresponding code, compile it and
run the corresponding simulation,

• make sim.show (resp make systemc.show and make vhdl.show) will display the simulation traces
generated by the interpreter (resp. SystemC and VHDL simulation).
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Chapter 4

The Graphical User Interface

This chapter describes the RFSM IDE1. This IDE basically provides a Graphical user Interface (GUI)
to the rfsmc compiler described in chapter 3.

The GUI allows

• writing, reading and editing of RFSM programs,

• generating and viewing graphical representations of these programs,

• running simulations,

• generating C, SystemC and VHDL code.

Note. This chapter supposes that the IDE has been correctly installed. If not, refer to the instal-
lation guide provided in the RFSM distribution.

First, launch the RFSM application by clicking on its icon in the installation directory or directly
from the Windows Start menu.

The application main window is shown in Fig. 4.1. The main elements are (with corresponding areas
labeled in red in Fig. 4.1) :

1. a menubar

2. four buttons for file manipulation; from left to right

• create a new file,

• open an existing file,

• save a file,

• save all files.

3. five buttons to invoke the compiler for (from left to right)

• generating graphical representations of the current program and visualize it,

• simulating the current program and visualize it,

• generating C code from the current program,

1Screenshots used in this chapter show the Windows version of the RFSM IDE. The IDE can also be built and used
on Unix-based systems (Linux, MacOS).
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• generating SystemC code from the current program,

• generating VHDL code from the current program (button VHDL).

4. a tab for viewing and editing input source files,

5. a tab for viewing output files,

6. a log area, displaying issued command and outputs from the compiler.

3a

1

2 2 2 2

4 5

6

3b 3c 3d 3e

Figure 4.1: Main window of the RFSM application

Invoke the [Configuration:Compiler and Tools] menu item and check that the specified paths are right
(see Fig. 4.2). They should respectively point to

• the location of the rfsmc compiler (<install>/bin/rfsmc, where <install> is the RFSM in-
stallation directory, as specified during the installation process),

• the location of the program to invoke for processing .dot files,

• the location of the program to invoke for viewing .dot files,

• the location of the program to invoke for viewing .vcd traces.

If the specified paths are not correct2, adjust them and click Ok.

Create a new source file or open an existing file by clicking on the New file (resp. Open File)
button or invoking the corresponding item of the File menu. A new tab will appear, either blank or

2This may be the case, for example, if you have changed the program to view graphs and/or images since RFSM was
installed.
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Figure 4.2: Path configuration window

containing the text of the opened file. This file can be freely edited and saved. Fig. 4.3 shows the GUI
after opening a source file (the opened file is located in directory examples/single/mousectlr of the
distribution).

To generate the graphical representation of the program, click on the Graph button (num-
bered 3a in Fig. 23). This will

• invoke the rfsmc compiler with the adequate option(s),

• generate the .dot result file (in the same directory as the source file),

• view this result by invoking the graph visualisation program specified in [Configuration : Compiler
and Tools] window.

The result is displayed in Fig. 4.4.

For simulating the program, invoke the compiler by clicking on the Sim button (numbered 2 in
Fig. 23). This will run the program, generate results in the file run.vcd and launch the VCD viewer
specified in [Configuration : Compiler and Tools] window. The result is displayed in Fig. 4.5.

For generating the C, SystemC or VHDL code, click on the corresponding buttons (numbered
3c, 3d and 3e in Fig. 4.1). The result files will be generated in sub-directories named ./ctask, ./systemc
and ./vhdl and displayed as separate tabs on the right, as illustrated in Fig. 4.6, for example.

Options to be passed to RFSM compiler can be set and inspected by invoking Compilater options
item of the Configuration menu, as illustrated in Fig. 4.7. These options are documented in Appendix
B.
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Figure 4.3: Editing source program

Figure 4.4: Viewing the graphical representation of the program
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Figure 4.5: Viewing the simulation result

Figure 4.6: After generating SystemC code

Figure 4.7: The options setting dialog
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Appendix A - Formal syntax of
RFSM programs

This appendix gives a BNF definition of the concrete syntax RFSM programs.

The meta-syntax is conventional. Keywords are written in boldface. Non-terminals are enclosed
in angle brackets (< . . . >). Vertical bars (|) indicate alternatives. Constructs enclosed in non-bold
brackets ([ . . . ]) are optional. The notation E∗ (resp E+) means zero (resp one) or more repetitions
of E, separated by spaces. The notation E∗

x (resp E+
x ) means zero (resp one) or more repetitions of

E, separated by symbol x. Terminals lid and uid respectively designate identifiers starting with a
lowercase and uppercase letter.
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〈program〉 ::= 〈decl〉∗

〈decl〉 ::= 〈type decl〉
| 〈cst decl〉
| 〈fn decl〉
| 〈fsm model〉
| 〈fsm inst〉
| 〈global〉

〈type decl〉 ::= type lid = 〈type expr〉
| type lid = enum { uid∗

, }
| type lid = record { 〈record field〉+, }

〈record field〉 ::= lid : 〈type expr〉

〈cst decl〉 ::= constant lid : 〈fres〉 = 〈const〉

〈fn decl〉 ::= function lid ( 〈farg〉∗, ) : 〈fres〉 { return 〈fbody〉 }

〈farg〉 ::= lid : 〈type expr〉

〈fres〉 ::= 〈type expr〉

〈fbody〉 ::= 〈expr〉

〈fsm model〉 ::= fsm model 〈id〉 [〈params〉] ( 〈io〉∗, ) {
states : uid∗

, ;

[〈vars〉]
trans : 〈transition〉∗, ;

itrans : 〈itransition〉 ;
}

〈params〉 ::= < 〈param〉∗, >

〈param〉 ::= lid : 〈type expr〉

〈io〉 ::= in 〈io desc〉
| out 〈io desc〉
| inout 〈io desc〉

〈io desc〉 ::= lid : 〈type expr〉

〈vars〉 ::= vars : 〈var〉∗, ;

〈var〉 ::= lid+
, : 〈type expr〉

〈transition〉 ::= [*] uid -- 〈condition〉 [〈actions〉] -> uid

〈itransition〉 ::= [〈actions〉] -> uid
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〈condition〉 ::= lid
| lid . 〈expr〉+.

〈actions〉 ::= | 〈action〉+;

〈action〉 ::= lid
| 〈lhs〉 := 〈expr〉

〈lhs〉 ::= lid
| lid [ 〈expr〉 ]
| lid [ 〈expr〉 : 〈expr〉 ]
| lid . lid

〈global〉 ::= input 〈id〉 : 〈type expr〉 = 〈stimuli〉
| output 〈id〉+, : 〈type expr〉
| shared 〈id〉+, : 〈type expr〉

〈stimuli〉 ::= periodic ( int , int , int )

| sporadic ( int∗, )

| value changes ( 〈value change〉∗, )

〈value change〉 ::= int : 〈const〉

〈fsm inst〉 ::= fsm 〈id〉 = 〈id〉 [< 〈inst param value〉+, >] ( 〈id〉∗, )

〈inst param value〉 ::= 〈constant〉
| lid
| [ 〈constant〉+, ]

〈type expr〉 ::= event
| int 〈int annot〉
| float
| char
| bool
| lid
| 〈type expr〉 array [ 〈array size〉 ]

〈int annot〉 ::= ε
| < 〈type index expr〉 >
| < 〈type index expr〉 : 〈type index expr〉 >

〈array size〉 ::= 〈type index expr〉

〈type index expr〉 ::= 〈int const〉
| lid
| ( 〈type index expr〉 )
| 〈type index expr〉 + 〈type index expr〉
| 〈type index expr〉 - 〈type index expr〉
| 〈type index expr〉 * 〈type index expr〉
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| 〈type index expr〉 / 〈type index expr〉
| 〈type index expr〉 % 〈type index expr〉

〈expr〉 ::= 〈simple expr〉
| 〈expr〉 >> 〈expr〉
| 〈expr〉 << 〈expr〉
| 〈expr〉 & 〈expr〉
| 〈expr〉 || 〈expr〉
| 〈expr〉 ^ 〈expr〉
| 〈expr〉 + 〈expr〉
| 〈expr〉 - 〈expr〉
| 〈expr〉 * 〈expr〉
| 〈expr〉 / 〈expr〉
| 〈expr〉 % 〈expr〉
| 〈expr〉 +. 〈expr〉
| 〈expr〉 -. 〈expr〉
| 〈expr〉 *. 〈expr〉
| 〈expr〉 /. 〈expr〉
| 〈expr〉 = 〈expr〉
| 〈expr〉 != 〈expr〉
| 〈expr〉 > 〈expr〉
| 〈expr〉 < 〈expr〉
| 〈expr〉 >= 〈expr〉
| 〈expr〉 <= 〈expr〉
| 〈subtractive〉 〈expr〉
| lid ( 〈expr〉∗, )

| lid [ 〈expr〉 ]
| lid . lid
| lid [ 〈expr〉 : 〈expr〉 ]
| 〈expr〉 ? 〈expr〉 : 〈expr〉
| 〈expr〉 :: 〈type expr〉

〈simple expr〉 ::= lid
| 〈constant〉
| uid
| ( 〈expr〉 )

〈constant〉 ::= int
| float
| char

〈subtractive〉 ::= -

| -.

〈const〉 ::= 〈scalar const〉
| 〈array const〉
| 〈record const〉

〈array const〉 ::= [ 〈const〉+, ]
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〈record const〉 ::= { 〈record field const〉+, }

〈record field const〉 ::= lid = 〈scalar const〉

〈scalar const〉 ::= 〈int const〉
| 〈float const〉
| 〈char const〉
| uid

〈int const〉 ::= int
| - int

〈float const〉 ::= float
| - float

〈char const〉 ::= char

〈id〉 ::= lid
| uid
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Appendix B - Compiler options

Compiler usage : rfsmc [options...] files

-lib set location of the support library (default: /usr/local/rfsm/lib)
-dump model dump model in text format to stdout
-target dir set target directory (default: .)
-dot generate top-level .dot representation(s)
-sim run simulation (generating .vcd file)
-ctask generate CTask code
-systemc generate SystemC code
-vhdl generate VHDL code
-version print version of the compiler and quit
-main set main model name (default: name of the last given input file)
-dot no captions Remove captions in .dot representation(s)
-dot fsm insts generate .dot representation of all FSM instances
-dot fsm models generate .dot representation of all FSM models
-dot actions nl write actions with with a separating newline
-trace set trace level for simulation (default: 0)
-vcd set name of .vcd output file when running simulation (default: run.vcd)
-synchronous actions interpret actions synchronously
-sc time unit set time unit for the SystemC test-bench (default: SC NS)
-sc trace set trace mode for SystemC backend (default: false)
-stop time set stop time for the SystemC and VHDL test-bench (default: 100)
-sc double float implement float type as C++ double instead of float (default: false)
-vhdl trace set trace mode for VHDL backend (default: false)
-vhdl time unit set time unit for the VHDL test-bench
-vhdl ev duration set duration of event signals (default: 1 ns)
-vhdl rst duration set duration of reset signals (default: 1 ns)
-vhdl numeric std translate integers as numeric std [un]signed (default: false)
-vhdl bool as bool translate all booleans as boolean (default: false)
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Appendix C1 - Example of
generated C code

This is the code generated from program given in Listing 2.1� �
task g4 (

in event h ;
in int e ;

out int s ;
)

{
int k ;
enum {E0 , E1} s t a t e = E0 ;
s=0;
while ( 1 ) {

switch ( s t a t e ) {
case E1 :

wait ev(h) ;
i f ( k<4 ) {

k=k+1;
}

else i f ( k==4 ) {
s=0;
s t a t e = E0 ;
}

break ;
case E0 :

wait ev(h) ;
i f ( e==1 ) {

k=1;
s=1;
s t a t e = E1 ;
}

break ;
}

}
} ;� �
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Appendix C1 - Example of
generated SystemC code

This is the code generated from program given in Listing 2.1

Listing 4.1: File g4.h� �
#include ” systemc . h”

SC MODULE(G4)
{

// Types
typedef enum { E0 , E1 } t s tate ;
// IOs
sc in<bool> h ;
sc in<sc uint<1> > e ;
sc out<sc uint<1> > s ;
// Constants
stat ic const int n = 4 ;
// Local v a r i a b l e s
t s tate s t a t e ;
sc uint<3> k ;

void r e a c t ( ) ;

SC CTOR(G4) {
SC THREAD( r e a c t ) ;
}

} ;� �
Listing 4.2: File g4.cpp� �

#include ”g4 . h”
#include ” rfsm . h”

void G4 : : r e a c t ( )
{

s t a t e = E0 ;
s . wr i t e (0 ) ;
while ( 1 ) {

switch ( s t a t e ) {
case E1 :

wait (h . posedge event ( ) ) ;
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i f ( k<4 ) {
k=k+1;
}

else i f ( k==4 ) {
s . wr i t e (0 ) ;
s t a t e = E0 ;
}

wait (SC ZERO TIME) ;
break ;

case E0 :
wait (h . posedge event ( ) ) ;
i f ( e . read ( )==1 ) {

k=1;
s . wr i t e (1 ) ;
s t a t e = E1 ;
}

wait (SC ZERO TIME) ;
break ;

}
}

} ;� �
Listing 4.3: File inp H.h� �

#include ” systemc . h”

SC MODULE( Inp H)
{

// Output
sc out<bool> H;

void gen ( ) ;

SC CTOR(Inp H) {
SC THREAD( gen ) ;
}

} ;� �
Listing 4.4: File inp H.cpp� �

#include ”inp H . h”
#include ” rfsm . h”

typedef struct { int per iod ; int t1 ; int t2 ; } per iodic t ;

stat ic per iodic t clk = { 10 , 0 , 80 } ;

void Inp H : : gen ( )
{

int t=0;
wait ( clk . t1 , SC NS) ;
not i fy ev (H, ”H” ) ;
t = clk . t1 ;

while ( t <= clk . t2 ) {
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wait ( clk . per iod , SC NS) ;
not i fy ev (H, ”H” ) ;
t += clk . per iod ;
}

} ;� �
Listing 4.5: File inp E.h� �

#include ” systemc . h”

SC MODULE( Inp E)
{

// Output
sc out<sc uint<1> > E;

void gen ( ) ;

SC CTOR(Inp E) {
SC THREAD( gen ) ;
}

} ;� �
Listing 4.6: File inp E.cpp� �

#include ”inp E . h”
#include ” rfsm . h”

typedef struct { int date ; int va l ; } vc t ;
stat ic vc t vcs [ 3 ] = { {0 ,0} , {25 ,1} , {35 ,0} } ;

void Inp E : : gen ( )
{

int i=0, t=0;
while ( i < 3 ) {

wait ( vcs [ i ] . date− t , SC NS) ;
E = vcs [ i ] . va l ;
t = vcs [ i ] . date ;
i++;
}

} ;� �
Listing 4.7: File tb.cpp� �

#include ” systemc . h”
#include ” rfsm . h”
#include ”inp E . h”
#include ”inp H . h”
#include ”g4 . h”

int sc main ( int argc , char ∗argv [ ] )
{

sc s igna l<sc uint<1> > E;
sc s igna l<bool> H;
sc s igna l<sc uint<1> > S ;
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s c t r a c e f i l e ∗ t r a c e f i l e ;
t r a c e f i l e = sc create vcd trace f i l e ( ” tb” ) ;
sc t race ( t r a c e f i l e , E, ”E” ) ;
sc trace ( t r a c e f i l e , H, ”H” ) ;
sc trace ( t r a c e f i l e , S , ”S” ) ;

Inp E Inp E( ”Inp E” ) ;
Inp E(E) ;
Inp H Inp H( ”Inp H” ) ;
Inp H(H) ;

G4 g4 ( ”g4” ) ;
g4 (H,E, S) ;

s c s ta r t (100 , SC NS) ;

s c c lo se vcd trace f i l e ( t r a c e f i l e ) ;

return EXIT SUCCESS;
}� �
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Appendix C3 - Example of
generated VHDL code

This is the code generated from program given in Listing 2.1

Listing 4.8: File g4.vhd� �
l ibrary i e e e ;
use i e e e . std logic 1164 . a l l ;
use i e e e . numeric std . a l l ;
l ibrary rfsm ;
use rfsm . core . a l l ;

entity g4 i s
port (

h : in s td l og i c ;
e : in s td l og i c ;
s : out s td l og i c ;
r s t : in s td l og i c
) ;

end g4 ;

architecture RTL of g4 i s
type t s tate i s ( E0 , E1 ) ;
signal s t a t e : t s tate ;
signal k : unsigned (2 downto 0) ;

begin
process ( r s t , h )
begin

i f ( r s t = ’1 ’ ) then
s t a t e <= E0 ;
s <= ’0 ’ ;

e l s i f r i s ing edge (h) then
case s t a t e i s
when E1 =>

i f ( k<to unsigned (4 , 3 ) ) then
k <= k+to unsigned (1 , 3 ) ;

e l s i f ( k = to unsigned (4 , 3 ) ) then
s <= ’0 ’ ;
s t a t e <= E0 ;

end i f ;
when E0 =>

i f ( e = ’1 ’ ) then
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k <= to unsigned (1 , 3 ) ;
s <= ’1 ’ ;
s t a t e <= E1 ;

end i f ;
end case ;
end i f ;

end process ;
end RTL;� �

Listing 4.9: File tb.vhd� �
l ibrary i e e e ;
use i e e e . std logic 1164 . a l l ;
use i e e e . numeric std . a l l ;
l ibrary rfsm ;
use rfsm . core . a l l ;

entity tb i s
end tb ;

architecture Bench of tb i s

component g4
port (

h : in s td l og i c ;
e : in s td l og i c ;
s : out s td l og i c ;
r s t : in s td l og i c
) ;

end component ;

signal E: s td l og i c ;
signal H: s td l og i c ;
signal S : s td l og i c ;
signal r s t : s td l og i c ;

begin

inp E : process
type t vc i s record date : time ; va l : s td l og i c ; end record ;
type t vcs i s array ( 0 to 2 ) of t vc ;
constant vcs : t vcs := ( (0 ns , ’ 0 ’ ) , (25 ns , ’ 1 ’ ) , (35 ns , ’ 0 ’ ) ) ;
variable i : na tura l := 0 ;
variable t : time := 0 ns ;
begin

for i in 0 to 2 loop
wait for vcs ( i ) . date−t ;
E <= vcs ( i ) . va l ;
t := vcs ( i ) . date ;

end loop ;
wait ;

end process ;
inp H : process

type t pe r i od i c i s record per iod : time ; t1 : time ; t2 : time ; end record ;
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constant pe r i o d i c : t pe r i od i c := ( 9 ns , 0 ns , 80 ns ) ;
variable t : time := 0 ns ;
begin

H <= ’0 ’ ;
wait for pe r i o d i c . t1 ;
not i fy ev (H, 1 ns ) ;
while ( t < p e r i o d i c . t2 ) loop

wait for p e r i o d i c . per iod ;
not i fy ev (H, 1 ns ) ;
t := t + pe r i o d i c . per iod ;

end loop ;
wait ;

end process ;

U0 : G4 port map(H,E, S , r s t ) ;

process

begin
r s t <= ’1 ’ ;
wait for 1 ns ;
r s t <= ’0 ’ ;
wait for 100 ns ;
wait ;

end process ;
end Bench ;� �
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